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Objective analysis: We know that in NWP the governing equations, which are essentially nonlinear 

partial differential equations, are integrated forward in time to obtain the future values of the field 

variables. 

       Since the governing equations are nonlinear partial differential equations and as there is no method 

to integrate analytically such equation, these equations are integrated numerically. To integrate the 

equations numerically the analytical time and spatial domain are discretised into finite number of time 

steps and spatial grid points. As the solving of these nonlinear PDE are BVP (boundary value problem) 

and IVP, (Initial value problem) we require the values of the field variable at all grid points at each 

level at initial time. But the observed field variables are not necessarily at the grid points. Thus, our 

first task is to prepare the values of the field variable at grid points from the observing points. This is 

known as objective analysis. 

Different types of objective analysis scheme. 

1. Polynomial fitting 

2. Crossman’s scheme 

3. Optimum interpolation scheme 

 

Polynomial fitting: In this method spatial variation of any field variable over a limited region at a 

given vertical level and at given time is expressed as a polynomial in 𝑥 (longitude) and 𝑦 (latitude); 

the degree of which is determined by the number of observing points over the region. 

Let us consider an arbitrary field variable,′𝑍′,  which is to be objectively analyzed. Obviously at any 

instant at any level, it is a function of (𝑥, 𝑦). 

Let there are ′(𝑛 + 1)′ number of observing points with coordinates {(𝑥𝑖, 𝑦𝑖); 𝑖 = 1, . . , (𝑛 + 1)}.  

Let 𝑍(𝑥𝑖, 𝑦𝑖) = 𝑍𝑖 , ∀𝑖 = 1, 𝑛. 

In this method, 𝑍(𝑥, 𝑦) is expressed as a polynomial in 𝑥, 𝑦 with degree ′𝑛′, like, 𝑍(𝑥, 𝑦) =

∑ 𝑎𝑛−𝑖+1𝑥𝑛−𝑖+1𝑦𝑖−1𝑛+1
𝑖=1 … … . (1) 

Thus, we have following set of (n+1) linear equations in 𝑎𝑖 for ∀𝑖 = 0, 𝑛 

𝑍𝑘 = ∑ 𝑎𝑛−𝑖+1𝑥𝑘
𝑛−𝑖+1𝑦𝑘

𝑖−1
𝑛+1

𝑖=1
… … . (𝑘 = 1, . . , 𝑛 + 1) 

Above equations can be solved by inverting the (n+1) x (n+1) coefficient matrix. 

Once, the polynomial is constructed using above computed values of 𝑎𝑖 for ∀𝑖 = 0, 𝑛; values of the 

field variables 𝑍 can be computed at any arbitrary point.  
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Although this method is very robust mathematically, but it is very difficult and time & memory 

consuming in inverting a very large order matrix. 

Cressman’s successive correction method: Let us consider an arbitrary field, ‘Z’ to be analyzed at 

an arbitrary grid point ‘G’. Let us consider also an observing point ‘O’ near the grid point. 

This method starts with an initial guess for the true value of a field  ‘Z’ at the ‘G’ & ‘O’ both. 

Let 𝑍𝐺
(0)

 & 𝑍𝑂
(0)

 be the initial guess value of ‘Z’ at ‘G’ & ‘O’ both. 

If𝑍𝐺
𝑇 & 𝑍𝑂

𝑇 are the true values of ‘Z’ at ‘G’ & ‘O’ respectively, then error in initial guess at 

these points are respectively {𝑍𝐺
𝑇 −- 𝑍𝐺

(0)
} & {𝑍𝑂

𝑇 −- 𝑍𝑂
(0)

}.  

In this method it is assumed that both the errors are same, i.e.,  𝑍𝐺
𝑇 − 𝑍𝐺

(0)
=𝑍𝑂

𝑇 −- 𝑍𝑂
(0)

. This 

gives the 1st improved guess for Z, denoted by 𝑍𝐺
(1)

= 𝑍𝐺
(0)

+[𝑍𝑂
𝑇 − 𝑍𝑂

(0)
]. Similarly, at the 

observing point ‘O’ also.  

Thus 1st improved guess is obtained by adding a correction to the initial guess. 

Correction is made successively, such that (m+1)th improved guess of ‘Z’ at the grid point ‘G’ 

is given by, 𝑍𝐺
(𝑚+1)

= 𝑍𝐺
(𝑚)

+ [𝑍𝑂
𝑇 − 𝑍𝑂

(𝑚)
].  

Above iteration method converges when following condition is satisfied, |, 𝑍𝐺
(𝑚+1)

− 𝑍𝐺
(𝑚)

| <

𝜖,  for a pre assigned very small positive number 𝜖.  Then either of 𝑍𝐺
(𝑚+1)

& 𝑍𝐺
(𝑚)

 is taken as 

an estimated analyzed value, say, 𝑍𝑂
𝐴𝐺  based on the value at the observing point ‘O’. 

If there are a number of observing points, say, 𝑂1,  𝑂2, 𝑂3, … 𝑒𝑡𝑐. ; around a specific grid point 

‘G’ and if 𝑍𝑂𝑘

𝐴𝐺  be the estimated analyzed value of ‘Z’ based on observed value at ‘Ok’, for 

k=1,2,3…etc. 

Then analyzed value of ‘Z’ at ‘G’ is given 𝑍𝐺
𝐴 =

∑ 𝑤𝑘𝑍𝑂𝑘
𝐴𝐺

𝑘

∑ 𝑤𝑘𝑘
, 

Where 𝑤𝑘 =
𝑅2−𝑟𝑘

2

𝑅2+𝑟𝑘
2

,  𝑖𝑓 𝑟𝑘 < 𝑅 and 𝑤𝑘 = 0,  𝑖𝑓 𝑟𝑘 ≥ 𝑅 

  Where, 𝑅 is a positive integral multiple of grid length, decided based on the scale of the 

weather, for which analysis is done and  𝑟𝑘 is the distance between ‘G’ and the observing point 

𝑂𝑘. 

For the scale of the given weather, R is fixed. 

Then as shown in adjoining figure, draw a circle centered at ‘G’ with radius ‘R’. 

Consider those observing points only, which lie inside the circle. 
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Then assign weight 
𝑅2−𝑟𝑘

2

𝑅2+𝑟𝑘
2 for such observing point Ok, with more weight to the nearer points 

and decreasing as going away from G, as shown in the figure. 

Major limitation is fixing weight in an empirical method; thus, robustness is missing. 
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Optimum interpolation method: Let us consider an arbitrary field, ‘Z’ to be analyzed at an arbitrary 

grid point ‘G’. Let, 𝑍1&𝑍2are two unbiased estimates of the of the true value 𝑍𝑇 of ‘𝑍′, obtained from 

two independent sources. If 𝜀1& 𝜀2 are the errors in the above two estimates, then 𝜀1 = 𝑍𝑇 − 𝑍1& 𝜀2 = 

𝑍𝑇 − 𝑍2 are two random variables with mean zero, i.e., 𝜀1̅ = 0 & 𝜀2̅ = 0.   

Now another one estimate for 𝑍  is constructed as 𝑍𝐴 = 𝑎𝑍1 + (1 − 𝑎)𝑍2. 

If 𝜀 be the error in this estimate, then 

 𝜀 = 𝑍𝑇-[𝑎𝑍1 + (1 − 𝑎)𝑍2] 

= (𝑎 + 1 − 𝑎)𝑍𝑇 − [𝑎𝑍1 + (1 − 𝑎)𝑍2] 

= 𝑎(𝑍𝑇-𝑍1) + (1 − 𝑎)(𝑍𝑇 − 𝑍2) 

= 𝑎𝜀1 + (1 − 𝑎)𝜀2 

⇒ 𝜀̅ = 𝑎𝜀1̅ + (1 − 𝑎)𝜀2̅ ⇒ 𝜀̅ = 0 

Thus,  𝑍𝐴 = 𝑎𝑍1 + (1 − 𝑎)𝑍2 is also an unbiased estimate of 𝑍. 

Now the coefficient ‘a’ is determined in such a way that the variance of the error 𝜀 is minimum. 

We know that for two random variables, 𝑋 & 𝑌, if 𝑇 = 𝑚𝑋 + 𝑛𝑌,  𝑡ℎ𝑒𝑛 𝑉𝑎𝑟(𝑇) = 𝑚2𝑉𝑎𝑟(𝑋) +

2𝑚𝑛𝐶𝑜𝑣(𝑋, 𝑌) + 𝑛2𝑉𝑎𝑟(𝑌).   

Hence, 𝑉𝑎𝑟(𝜀) = 𝑎2𝑉𝑎𝑟(𝜀1) + 2𝑎(1 − 𝑎)𝐶𝑜𝑣(𝜀1, 𝜀2) + (1 − 𝑎)2𝑉𝑎𝑟(𝜀2).  

Let, 𝜎1 = +√𝑉𝑎𝑟(𝜀1) , 𝜎2 = +√𝑉𝑎𝑟(𝜀2) and 𝜎 = +√𝑉𝑎𝑟(𝜀) 

As, 𝑍1&𝑍2 are independent, hence 𝜀1, 𝜀2 are also so. Hence, 𝐶𝑜𝑣(𝜀1, 𝜀2) = 0. Hence, 𝜎2 = 𝑎2𝜎1
2 +

(1 − 𝑎)2𝜎2
2. 

Now, minimalization of 𝑉𝑎𝑟(𝜀) requires, 
𝜕[𝜎2]

𝜕𝑎
= 0 ⇒ 𝑎 =

𝜎2
2

𝜎1
2+𝜎2

2 

Hence optimally interpolated estimate of ‘Z’ is an unbiased and minimum error variance estimate and 

is given by 

(
𝜎2

2

𝜎1
2 + 𝜎2

2
) 𝑍1 + (

𝜎1
2

𝜎1
2 + 𝜎2

2
) 𝑍2 
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Maximum likelihood estimate of a variable: Let us consider an arbitrary field, ‘Z’ , the maximum 

likelihood estimate of which is to be analyzed at an arbitrary grid point ‘G’. Let, 𝑍1&𝑍2are two 

unbiased estimates of the of the true value 𝑍𝑇  of ‘𝑍′, obtained from two independent sources.  

If 𝜀1& 𝜀2 are the errors in the above two estimates, then 𝜀1 = 𝑍𝑇 − 𝑍1& 𝜀2 = 𝑍𝑇 − 𝑍2 are two random 

variables with mean zero, i.e., 𝜀1̅ = 0 & 𝜀2̅ = 0.  Now, both 𝜀1, 𝜀2 follow Gaussian distribution with 

mean zero and SDs 𝜎1&𝜎2 respectively. So, 𝑓𝜀1
(𝜀1)=

1

𝜎1√2𝜋
exp (−

𝜀1
2

𝜎1
2) & 𝑓𝜀2

(𝜀2)=
1

𝜎2√2𝜋
exp (−

𝜀2
2

𝜎2
2); 

where, 𝜎1 = +√𝑉𝑎𝑟(𝜀1) , & 𝜎2 = +√𝑉𝑎𝑟(𝜀2). Thus Joint probability density function of the bivariate 

random variable (𝜀1, 𝜀2) is 𝑓𝜀1,𝜀2
(𝜀1, 𝜀2) = 𝑓𝜀1

(𝜀1)𝑓𝜀2
(𝜀2); because 𝜀1, 𝜀2 are independent. So, 

𝑓𝜀1,𝜀2
(𝜀1, 𝜀2)=

1

2𝜋𝜎1𝜎2
𝑒𝑥𝑝 (−

𝜀1
2

𝜎1
2

−
𝜀2

2

𝜎2
2
).  

Maximum likelihood function is defined as the natural logarithm of 𝑓𝜀1,𝜀2
(𝜀1, 𝜀2). Thus, 𝑀𝐿𝐹 =

ln[ 𝑓𝜀1,𝜀2
(𝜀1, 𝜀2)] = − ln(2𝜋) − ln (𝜎1𝜎2) − (

𝜀1
2

𝜎1
2 +

𝜀2
2

𝜎2
2).  

Maximum Likelihood Estimate of ‘Z’ is that one which maximizes the maximum likely hood function 

(MLF). Thus MLF will be maximum, when 𝐽 = (
𝜀1

2

𝜎1
2 +

𝜀2
2

𝜎2
2) = [

(𝑍𝑇−𝑍1)2

𝜎1
2 +

(𝑍𝑇−𝑍2)2

𝜎1
2 ] is minimum. 𝐽 is 

known as cost function.  

Now, minimization of 𝐽 requires, 
𝜕𝐽

𝜕𝑍𝑇
= 0, 

 ⇒ 𝑍 = (
𝜎2

2

𝜎1
2+𝜎2

2
) 𝑍1 + (

𝜎1
2

𝜎1
2+𝜎2

2
) 𝑍2 

⇒ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑙𝑦 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 

⇒ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑙𝑦 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is the best estimate. It is known as best linear unbiased 

estimate (BLUE). 

 

 

 

 


